

Robust Multivariable Flutter Suppression for the Benchmark Active Control Technology (BACT) Wind-Tunnel Model

Martin R. Waszak

Langley Research Center Dynamics and Control Branch

Eleventh Symposium on Structural Dynamics and Control May 12-14, 1997

Outline

- BACT Overview
 - Program
 - Wind-Tunnel Model
- Control Design
 - Design Model
 - Design Objectives
 - Robust Multivariable Designs
- Experimental Results
- Concluding Remarks

BACT Program Overview

- Benchmark Aeroelastic Models Program
 - study physics of aeroelastic phenomena
 - » classical transonic flutter "bucket"
 - » shock induced instabilities
 - » dynamic vortex-structure interaction
 - data to validate steady and unsteady aero codes
 - active control of aeroelastic systems
- Benchmark Active Control Technology (BACT)
 - high quality unsteady aero data near flutter
 - active flutter suppression
 - » innovative control concepts spoilers and multiple effectors
 - » innovative design methods H , μ-synthesis, neural nets
 - validate on-line controller performance evaluation tool

BACT System Overview

- Pitch and Plunge Apparatus (PAPA)
 - 2-DOF: pitch and plunge
 - 5-6 deg max. rotation
 - 1.5 inch max. deflection
- Wind-Tunnel Model
 - rigid NACA 0012 airfoil
 - -AR = 2 (c = 16 in., b = 32 in.)
- Control Surfaces
 - span = 0.3b, centered at 0.6b
 - upper and lower spoilers
 - \Rightarrow chord = 0.15c
 - » 45 deg max. deflection
 - trailing edge flap surface
 - \rightarrow chord = 0.25c
 - » ±15 deg max. deflection
 - hydraulic actuators

- Instrumentation
 - 4 accelerometers in corners of wing
 - pitch angle sensors
 - 70 pressure transducers
 - » 58 @ 0.6b (incl. control surfaces)
 - » 17 @ 0.4b
 - add'l transducers on splitter plate
 - accels and strain gauges on PAPA

Flutter Suppression Control Laws

- Design Objectives
 - Stability Over Entire Operating Range
 - Acceptable Control Activity
 - Simple Implementation
- Traditionally Designed SISO Controllers
 - Demonstrate Flutter Suppression Using Spoilers
 - Develop Performance Specifications
 - Coupled SISO Controllers
- Robust MIMO Controllers
 - Demonstrate Multivariable Flutter Suppression
 - Evaluate EnhancedRobustness Properties

MIMO Controller Design Methods

Robustness

- Maintain Stability and Performance Subject to Model Variation
- Variations Include
 - » Operating Condition
 - » Model Error/Uncertainty

H Control

- Robust Stability
- Nominal Performance

µ-Synthesis

- Robust Stability
- Robust Performance
- Structured Uncertainty

Modeling for Flutter Suppression

Model elements

- structural dynamics
- steady and unsteady aerodynamics (including control effects)
- turbulence effects
- actuators, sensors, controller effects

P- Model

Plant Model

- Averaged over unstable conditions (q=155-195 psf)
- Frequency weighted internally balanced reduction

Uncertainty Model

- Based on reduced averaged model and ensemble
- Output multiplicative form

Weighting Functions

• Performance: $\max(\ddot{\theta}, \ddot{h}) < 0.01g$

• Control: $\max(\delta_{TE}, \delta_{US}) < 1.0 \deg$ (3.0 deg)

• Output: $W_y = 1.0e - 4$

SISO Control Law

Trailing Edge Flap Controller

Design Process

- Apply design algorithms
 - H and μ-synthesis
 - Used μ-Analysis and Synthesis Toolbox (for MATLAB)
- Reduce controller order
 - required order 24 states (or less)
 - frequency weighted internally balanced reduction
- Augment washout filters
 - low frequency attenuation was insufficient
 - significant biases and drift in accelerometer amps
- Discretize control law

Control Laws

H Design #1

Flutter Frequency

Control Laws

μ-Synthesis Design #1

Robustness Analysis

"Unit" Uncertainty

μ

"Average" Uncertainty

μ

Transient Response - Example

Experimental Results

Concluding Remarks

- Spoilers for Flutter Suppression
 - Representative of "Innovative Control Effectors"
 - Additional Design Freedom
 - Enhanced Redundancy
- Robust Multivariable Flutter Suppression
 - Enhanced Performance (over SISO designs)
 - Enhanced Robustness
- Design Issues
 - Difficulty Accomodating Washout Filters
 - Difficulty Accomodating Model Order Limitations
 - Sensitivity to Performance Specifications
 - Numerical Algorithms and Convergence Issues

